DELIVERABLE Task Taxonomies for Knowledge Content

نویسندگان

  • Aldo Gangemi
  • Stefano Borgo
  • Carola Catenacci
  • Jos Lehmann
چکیده

Plan(x) → Plan(x) ∧ ∀yz. ((Role(y) ∧ Uses(x,y)) → (Endurant(z) ∧ Selects(y,z))) ∧ ∀wk. ((Task(w) ∧ Uses(x,w)) → (Perdurant(k) ∧ Selects(w,k))) only states general restrictions over plan components and situation elements. We need to express acondition by which an instance of an abstract plan specifies instances of plan components, but noinstances of situation elements, e.g. that manager selects some (if any) instance of person. A circumstantial plan has all components selecting named individuals from the ground ontology (e.g.only specific persons, specified resources, a finite number of time intervals and space regions, etc.): CircumstantialPlan(x) =df Plan(x) ∧ ∀y. (Concept(y) ∧ Uses(x,y)) → ∃z. Entity(z) ∧ Selects(y,z)* *provided that z is a named entity, and not a skolemized individual (this is relevant only for thelanguages allowing skolemization btw). A saturated plan is a plan that cannot be executed twice, since it defines spatio-temporal parametersrestricted to one value, e.g. one of its tasks selects an event that is valued by a definite temporal valuein a definite space region: METOKIS 507164D07 – Task taxonomies for knowledge content Version 1.1Page 35 of 102SaturatedPlan(x) =df Plan(x) ∧ ∃y,z. Parameter(y) ∧ Parameter(z) ∧ Uses(x,y) ∧ Uses(x,z) ∧ ∃t,s.ValuedBy(y,t) ∧ TimeInterval(t) ∧ ¬∃t1. TimeInterval(t1) ∧ ValuedBy(y,t1) ∧ t?t1 ∧ ValuedBy(z,s) ∧ SpaceRegion(s) ∧ ¬∃s1. SpaceRegion(s1) ∧ ValuedBy(y,s1) ∧ s?s1 Of course, in the case of maximal spatio-temporal regions, a saturated plan tends to approximate anabstract plan from the execution viewpoint, but these worst cases are unavoidable when dealing withmaximality. Plan executions are situations that proactively satisfy a plan (cf. definition of P-SAT above): PlanExecution(x) =df Situation(x) ∧ ∃y. Plan(y) ∧ P-SAT(x,y) Subplan executions are parts of the whole plan execution: ∀p1,p2,s1,s2. (Plan(p1) ∧ Plan(p2) ∧ ProperPart(p1,p2) ∧ P-SAT(p1,s1) ∧ P-SAT(p2,s2)) →ProperPart(s1,s2) A goal situation is a situation that satisfies a goal: GoalSituation(x) =df Situation(x) ∧ ∃y. Goal(y) ∧ SAT(x,y) Opposite to the case of subplan executions, a goal situation is not part of a plan execution: GoalSituation(x) → ∀y,p,s. (Goal(y) ∧ SAT(x,y) ∧ Plan(p) ∧ ProperPart(p,y) ∧ P-SAT(s,p)) →

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Large Scale Ontology Networks

Adoptable, high performing, large scale ontologies that can be extended to support multi-media play a crucial role in building effective content and knowledge management systems and applications. In the context of developing a Unified Taxonomy and Ontology Network (UTON), we have undertaken the task of developing a technology framework for building large scale ontologies. This paper describes t...

متن کامل

Evaluating Task-Dependent Taxonomies for Navigation

Taxonomies of concepts are important across many application domains, for instance online shopping portals use catalogs to help users navigate and search for products. Task-dependent taxonomies, e.g., adapting the taxonomy to a specific cohort of users, can greatly improve the effectiveness of navigation and search. However, taxonomies are usually created by domain experts and hence designing t...

متن کامل

BLUSNO: A System for Orientation, Visualization, and Quality Assurance of SNOMED CT Using Abstraction Networks

Biomedical ontologies are generally very large and complex. Their size and complexity make quality assurance a difficult and timeconsuming task. Compact networks called abstraction networks can be derived to summarize the content and structure of ontologies and support their quality assurance. The Biomedical Layout Utility for SNOMED CT (BLUSNO) is a system for automatically deriving and visual...

متن کامل

LOD2 Deliverable D3.4.1: Report on Relevant Automatically Detectable Modelling Errors and Problems

This report documents a survey about modelling errors and problems in semantic web knowledge bases. It identifies different types of errors which can typically occur during the creation and lifecycle of knowledge bases like OWL ontologies or interlinked data. Additionally, an overview about existing tool support is given. This will show which tool covers which kinds of errors/problems. From thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004